

High Performance Applet Engine for Symbian OS.

For Series 60, Series 80, 7710 and UIQ compatible devices.

Developer Manual

F(x) Version 2.0

BETA 6 RELEASE - 2005-07-05
This document is under development.

http://www.symbianfx.com

Copyright © 2004, 2005 Loginid Enr. All rights reserved.
No part of this material may be reproduced without the express written permission of Loginid Enr.

‘Symbian’, ‘Symbian OS’, ‘UIQ Technology’, ‘UIQ’ and other associated Symbian marks are all trademarks of Symbian Ltd.

‘Nokia’, ‘Series60’, ‘Series80’, ‘Series90’ and other associated Nokia marks are all trademarks of Nokia Corporation.
Other trademarks that may be mentioned in this document are property of their respectful owners.

http://www.symbianfx.com/

F(x) for Symbian OS - Developer Manual
http://www.symbianfx.com

Table of Contents

1 Overview of F(x)..4
2 Document File Format ..4
3 File Management ...5
4 Note Files ...5
5 Constant Definition Files ...6
6 Table (CSV) Files ...6
7 Applet Files ...7
8 Applet Editing Interface ..8
9 Using Data Input & Output User Interface...9
10 F(x) language fundamentals.. 10

10.1 Statements... 10
10.2 Expressions .. 10
10.3 Comments.. 10

11 Variable Declaration... 10
12 Variable Types .. 11

12.1 Supported Variable Types... 11
12.2 Variable Type Interpretation ... 11
12.3 Silent Type Conversion .. 12

13 Dynamic Variables ... 13
13.1 Declaration... 13
13.2 User Input.. 13
13.3 Content Reset Button... 13
13.4 Interface Lock Button .. 13
13.5 Landscape / Portrait Mode Button.. 14

14 Dynamic Variable Interfaces ... 15
14.1 Declaration Syntax .. 15
14.2 Naming.. 15
14.3 Default Expression Editor ... 15
14.4 String Input/Output... 16
14.5 Unit Input/Output.. 16
14.6 Enum Input (Value List) ... 16
14.7 Other Interfaces.. 17

15 Numerical Representations ... 19
15.1 Input Format .. 19
15.2 Output Format .. 19
15.3 Result Output Format .. 19

16 Escape Sequences ... 20
17 Operators ... 21

17.1 Unary .. 21
17.2 Arithmetic / Algebraic .. 21
17.3 Conditional ... 21
17.4 Logical ... 21
17.5 Binary.. 22
17.6 Other... 22
17.7 Operator Precedence ... 22

18 Keywords ... 23
19 Execution control functions ... 23
20 Arrays, Vectors and Matrices... 24

20.1 In-place Arrays Declarations ... 24
20.2 Array Padding ... 24
20.3 Comma vs. Space Array Element Separation .. 25
20.4 Zero Size Array Variables ... 25
20.5 Pre-allocated Array Variables .. 25
20.6 Matrices and Per-Element Array Operations .. 25
20.7 Matrix Multiplication... 26
20.8 Per-Element Array Multiplication.. 26
20.9 Matrix Transpose Operator ... 26

21 Strings ... 28
21.1 Using Strings .. 28
21.2 String Operations ..Error! Bookmark not defined.

22 Constants ... 30

 2

F(x) for Symbian OS - Developer Manual
http://www.symbianfx.com

22.1 Duplicate constants ... 30
22.2 Constant dataset file format ... 30
22.3 Unit conversion constants... 30

23 Conditions .. 31
24 Loops... 32
25 Expression Results... 32
26 Value Sampling ... 34
27 Graphing and Plotting... 35

27.1 One and Two Dimensional Graphs ... 35
28 Function Plotting.. 36

28.1 Sampling and plotting functions .. 36
28.2 Plotting bounds ... 36
28.3 Function variable access... 37
28.4 Creating overlapping graphs ... 37

29 Charting ... 38
29.1 Pie Chart Output Interface.. 38
29.2 Bar Chart Output Interface ... 38
29.3 Histogram Output Interface .. 38

30 Date, Time and Duration .. 40
30.1 Date, Time and Duration Representation .. 40
30.2 Date and Time Interfaces ... 40
30.3 Duration Interface ... 40

31 Tables .. 41
31.1 File Format ... 41
31.2 Column Names ... 41
31.3 Data types ... 41
31.4 Table ID and Selection ... 42
31.5 Table resources... 43

32 Stacks.. 43
33 Dynamic User Interface Creation ... 44

33.1 Variable Access ... 44
33.2 Variable Creation... 45
33.3 F(x) User Interface Paradigm.. 46
33.4 Variable Content Modification.. 46

34 Executing Applets as Functions.. 47
35 Continuous Execution... 48
36 F(x) Applet Library... 49
37 Support.. 49
38 Applet Submission ... 49
39 Software License Agreement ... 50
Appendix A – Simple Examples .. 51

F(x) as a tape / financial calculator ... 51
F(x) as a tape calculator with tax ... 51
Base Conversion... 52

Appendix B – Unit conversion .. 53
International System of Units (SI).. 55
Conversion Between Units... 55
Appendix D – Technical Information ... 56

 3

F(x) for Symbian OS - Developer Manual
http://www.symbianfx.com

1 Overview of F(x)

F(x) is a real-time applet engine that utilizes C-like programming language syntax
for applet creation. Applets are compiled on the fly as you edit them, providing
immediate results and feedback. F(x) has been designed from the ground up for the
Symbian Operating System.

Originally, F(x) has been conceived to be a powerful programmable formula
evaluation engine. Over time, with development of various user interface features
and programming language enhancements, F(x) has matured into an applet engine –
a system that allows creation of miniature programs.

F(x) allows creation of custom applets that can be executed in the same manner on
all Symbian OS user interface platforms. Because of on-device compilation and
execution of applets it is possible to easily customize existing or create new applets.

The goal of F(x) software solution is to provide a versatile and customizable applet
development environment that will allow you to craft your Symbian device to your
personal and professional needs.

2 Document File Format
Example of Japanese language

(Unicode character set)
used within F(x) applets.

F(x) documents are stored as separate files on the file
system organized in folders. F(x) allows for a file-
manager-like navigation to select and manage desired
documents. F(x) documents are stored using UTF-8
file format compatible with traditional ASCII. F(x) also
understands Big-Endian Unicode encoding. Any file
encountered in Unicode format will be automatically
converted to UTF-8 when saved.

F(x) document file format allows document creation
and editing using MS Windows Notepad application
available on any Microsoft Windows OS. Unicode
storage of documents allows them to contain text in
any language.

 4

F(x) for Symbian OS - Developer Manual
http://www.symbianfx.com

3 File Management

File management view of F(x) resembles a traditional
file manager view, where you have a list of files and
folders to categorize them. Selecting a folder with a
stylus or navigational keys will enter the folder.
Selecting a file with a stylus or navigational keys will
open it for editing.

Once editing of the file is complete, you can exit back
to the main file list screen by tapping the “Go Back”
button at the bottom right of the screen. At this point,
the file will be saved.

Various file management operations are available
through the FX application menu. These operations
include creation of new folders and files (applets, notes
and constant definition files), renaming/relocation of
the existing files etc. Some of these operations can be performed on multiple files
simultaneously. To select multiple files simultaneously, files should be tapped with a
stylus on their icon to the left of the file name. This operation will select the file but
will not open it for editing. (Selection of multiple files is available only on Symbian
platforms that support a pointing device.)

File Management on UIQ Platform

4 Note Files

Note File Editing on UIQ Platform

Notes are text files provided as a convenient way for
applet documentation. Creating and editing a note is
similar to creating and editing an applet. To view or
edit a note, simply click on the note file (note file is
distinguished by the “notepad” icon on the left side of
the file list). To create a note file choose “F(x)/New
Note” menu option in the file manager.

 5

F(x) for Symbian OS - Developer Manual
http://www.symbianfx.com

5 Constant Definition Files

Constant definition files contain lists of constants that
can be used within F(x) applets. For each constant
definition file, F(x) creates a constant category with the
name of the file. This provides an easy way to group
various constant into categories. Constant definition
files are distinguished by the “C” icon on the left of the
file management view. To add/remove constants in a
file, select it in the file manager. To create a new
constant definition file choose “F(x)/New Constant Set”
menu option when in file manager.

Constant Editing on UIQ Devices

Please note that removing constants from existing
constant definition files or deleting constant definition
files can cause certain applets to stop working since
they may be relying on the deleted constants to
perform their calculations.

6 Table (CSV) Files

F(x) allows storage and retrieval of data from Tables. Tables are traditional CSV
(Comma Separated Value) files that always reside on the file system in their original
text format.

CSV files are compatible with any mainstream spreadsheet applications such as
Microsoft Excel, Lotus 1-2-3 and Open Office.

F(x) applets can retrieve data from and save data to CSV files. These files can also
be opened in the text editor and modified manually. Contents of CSV files can be
transmitted via E-Mail, SMS or MMS.

Table access functions also offer a convenient way for persistent storage of
information as well as a light database-like functionality.

 6

F(x) for Symbian OS - Developer Manual
http://www.symbianfx.com

7 Applet Files

Applet Interface on UIQ Devices

Applet files are text files that are intended to contain
implementation of applets. When editing an applet,
F(x) tracks modifications to it and
recompiles/reinterprets the applet on the fly providing
you with the real-time compiler feedback and applet
execution.

To view, edit or execute an applet, simply click on the
applet file when in the file manager (applet file is
distinguished by the “F(x)” icon on the left of the file
management view).

 Applet Interface on Series 90 Devices

 7

F(x) for Symbian OS - Developer Manual
http://www.symbianfx.com

8 Applet Editing Interface

A. Dynamic Variable Input
B. Dynamic Variable Output
C. Applet Result or Error
D. Applet Editor
E. Dynamic Variable Input Reset (Clear Inputs menu on Series 60 platform)
F. Dynamic Variable Interface Lock (View menu on Series 60 platform)
G. Keypad Accelerator
H. Go Back
I. Error Locator (Positions cursor at the error location)
J. Applet Name

Please refer to Section 13 - Dynamic Variables for information on dynamic variables.

A

C

B

I

J

D

E F G H

 8

F(x) for Symbian OS - Developer Manual
http://www.symbianfx.com

9 Using Data Input & Output User Interface

Switching between dynamically created controls can be done via keyboard by using
UP/DOWN arrow keys on your device (or UP/DOWN scroll wheel on Sony Ericsson
UIQ devices).

While navigating and selecting controls using a pointing device is a straightforward
process, devices running Series 60 and Series 80 user interface platforms require
key interaction.

Following controls are capable of handling keys:

Slider

“Right Key” - Increment the slider value by step.
“Left Key” - Decrement the slider value by step.

Enum (Multiple Choice Selection) or Unit Selection

“Select Key” - Bring up the list of items for selection.
(Select is typically a push down key on the center of the joystick control)

Graphs and Charts

“0” - maximize or restore to the original default position.

Graphs

“Select” - Enter/exit the graph interaction mode.
“1” - Switch to move mode.
“2” - Switch to zoom mode.
“3” - Reset pan and zoom to default.
Joystick - Modify pan or zoom settings.

When in the interaction mode, the graph is highlighted in red color and navigating
using joystick allows you to pan and zoom on the contents of the graph.

Array

“Select” - Enter/exit the array interaction mode.
Joystick - Pan

Checkbox, Button

“Select” - Check / Uncheck the checkbox or press on the button control.

 9

F(x) for Symbian OS - Developer Manual
http://www.symbianfx.com

10 F(x) language fundamentals

F(x) syntax is closely related to the C language syntax. F(x) utilizes a “relaxed
language parser” which will at times ignore invalid syntax such as extra commas and
will signal errors only when it no longer is able to interpret the applet syntax
correctly.

10.1 Statements

Statement is a single operation that is separated by a semicolon. A statement block
can be created by enclosing multiple statements within “{” and “}” brackets. A
statement block is typically treated as a single statement.

10.2 Expressions

Expression is a single statement that produces a single result.

10.3 Comments

F(x) supports C++ style single line comments that are prefixed by ‘//’ symbols.
Once F(x) encounters ‘//’ symbols in the applet, it will consider the rest of the line as
a comment.

Please note, that due to a limited screen size of mobile devices, the text line might
be wrapped by the editor, making it look like the comment continues on the next
line.

Example:

 // This is a comment

Comments can also be inserted into the applet following the “eof” keyword (please
refer to Section 19 - Keywords for additional information.

11 Variable Declaration

Syntax:

<variable type> <variable name> [= <expression>];

Example:
 var ItemCount;

real mass = 3.5 / 12;

 10

F(x) for Symbian OS - Developer Manual
http://www.symbianfx.com

F(x) supports use of unlimited variables. Variable names can not match the names
of internal functions or constants. Variable names are not case sensitive.

12 Variable Types

F(x) supports a number of variable types that can be used in declaration of variables
and will determine how variables are treated during calculations as well as how they
will be displayed.

12.1 Supported Variable Types

var - variant type (assumes real, reserved for future use)
int - integer with decimal representation
real - floating point representation
float - alias for real
double - alias for real
bool - boolean (true/false)
byte - 8 bit calculations (clamps values to 0..255)
char - character symbol (0..0xFF) representation
unicode – unicode symbol (0..0xFFFF) representation
hex - integer with hexadecimal representation
dec - integer with decimal representation (same as int)
oct - integer with octadecimal representation
bin - integer with binary representation
funds - fixed point currency representation according to current device local

settings (intended for financial calculations).
string - text string
date - integer timestamp (same as int)
complex - complex number

Variable type indicates how variable values will be treated throughout applet
execution and displayed in the applet result (or dynamic variable output). Please see
“Numerical Representations” section for additional information.

Some variable types are redundant (like real and float). This is done to simplify
applet creation for people who already have experience with programming and are
used to certain data types.

12.2 Variable Type Interpretation

F(x) performs calculations using two internal data types: 64 bit floating point and 64
bit signed integer. When operating on integer types, all calculations are integer.
When operating on floating point types or when mixing integer and floating point
calculations, all calculations are floating point. To perform integer and binary
arithmetic operations on floating point types, F(x) will convert values to integer,
perform required operations and then convert the result back to floating point.

 11

F(x) for Symbian OS - Developer Manual
http://www.symbianfx.com

12.3 Silent Type Conversion

F(x) tries to perform silent type conversion when mixing numerical types and strings.
If a string is assigned to a numeric type, it reads the contents of the string as a
value of that numerical type. If a number being assigned to a string, it is converted
to a string representation.

If adding strings and numbers, the result will be the same type as the first element
in the addition. For example: 123+”456” results in 579 while “123”+456 results in
“123456”.

Please note that only decimal numerical representation is supported when converting
data to/from string.

 12

F(x) for Symbian OS - Developer Manual
http://www.symbianfx.com

13 Dynamic Variables

Dynamic Variables offer user to input or output default variable value without having
to modify the applet source code. Declaration of a dynamic variable creates an
interface at the top of the application that allows the user to specify the variable
value. The default input/output interface for dynamic variables is an edit prompt
capable of expression evaluation. Other interfaces including sliders, check boxes and
choice selection popups are also available.

13.1 Declaration

Syntax:

in <variable type> <variable name>;
out <variable type> <variable name> [= <expression>];

Example:
 in real Celsius;
 out real Fahrenheit = (Celsius * 1.8) + 32;

13.2 User Input

Dynamic input variable edit prompt understands simplified mathematical
expressions.

Example:

sin(0.5)*5634/(34+67);

13.3 Content Reset Button

The dynamic variable content reset button located at the bottom left of the
applet editing interface clears all the user entered content in the dynamic
variable input fields.

13.4 Interface Lock Button

Interface lock button cycles between the following user interface configuration
modes:

• Variable input / output only.
• Variable input / output and the applet editor.
• Applet editor only.

 13

F(x) for Symbian OS - Developer Manual
http://www.symbianfx.com

On Series 60 this functionality is available via the “View” menu when the applet is
opened.

Interface lock can be used to prevent user interface from periodically reconfiguring
itself when editing a formula that contains dynamic variables.

13.5 Landscape / Portrait Mode Button

Landscape / Portrait Mode Button (available on Series 90 devices only)
switches the layout of the input and output user interface areas by placing
them either one on top of another (as done in the UIQ and Series 60
layouts) or side by side, allowing for more vertical space. Landscape mode
is available on Series 80 (via the application menu) and on Series 90 devices only.

 14

F(x) for Symbian OS - Developer Manual
http://www.symbianfx.com

14 Dynamic Variable Interfaces

14.1 Declaration Syntax

When declaring dynamic input/output variables, you can change their properties
such as their name as it appears in the input/output prompts or the interface they
use to input/output data.

14.2 Naming

When declaring dynamic input/output variables, you can change variable name to
appear differently in the input/output prompts. To do this, you have to use a
variable modifier as follows:

Syntax:

@<variable name> “<variable title>”;

Example:

 in real Fo;
 …
 @Fo “Objective Focal Length”

This example changes the input prompt:

“Fo: ……”
to:

“Objective Focal Length:”

It is a good practice to place variable modifiers at the end of the applet so that they
do not interfere with readability of the applet source code.

14.3 Default Expression Editor

When no variable interface has been specified, the EDIT interface is used as a
default. This interface offers expression input.

Example:

in float f;
@f “Try Expression Here”;
Or
@f edit “Try Expression Here”;

When entering values you can use expressions:
Try Expression Here: 23+45.6+77.8/3

 15

F(x) for Symbian OS - Developer Manual
http://www.symbianfx.com

EDIT interface also allows entry of data into an array:

Example:

in float f[];
@f “Enter Array”;

Enter Array: [1 2 3];

14.4 String Input/Output

When using EDIT interface to enter data, in order to enter text strings, they have to
be enclosed in quotes. To avoid having to do this, STRING interface is available:

Example:

in str name;
@name string “Client Name:”

Client Name: Jane Doe

14.5 Unit Input/Output

If dynamic variable is used to input/output SI compatible unit, it can be specified as
a “unit variable”. In addition to the value input field, unit variables display a unit
selector that can be used to specify the units in which the value has been entered.

Unit variable interface declaration syntax is as follows:

@var unit <category> <default unit type> [“<variable title>”];

@var identification of the variable to which this interface should be attached.

<category> is the SI constant category

<default unit type> is the SI unit type that belongs to the specified category.

The value entered by the user will be converted to this unit when
assigned to the variable.

Example:

float W,P;
@W unit weight kg “Weight”;
@P unit pressure kPa “Pressure”;

Please note that Unit Input interface supports expression input.

14.6 Enum Input (Value List)

 16

F(x) for Symbian OS - Developer Manual
http://www.symbianfx.com

Enum variable interface offers the user to make a single value selection from a list of
pre-defined items.

Syntax:

@var enum <array> [<default value>] [“<variable title>”];

@var identification of the variable to which this interface should be attached.

<array> - list of items to be presented to the user

<default value> - default value to be selected (must be a value present in the

array). If not specified, the first element of the array will be used as
the default selection.

Example:

float L,Sex,P;

@L enum [1 2 3] 2 “Level”;
@Sex enum [“Male”, “Female”];
@P enum [“YES”, “NO”] “YES” “Present”;

14.7 Other Interfaces

F(x) offers different variable interfaces for input and output of data. Please consult
Functions and Interfaces document that comes with F(x) for more information and
interface parameter specifications.

 17

F(x) for Symbian OS - Developer Manual
http://www.symbianfx.com

15 Static Variables

Static variables are variables that are persistent between applet executions.
Variables in F(x) are created at the beginning of the applet execution. Static
variables, however, are preserved between applet executions and are reset only
when the applet is being recompiled.

The following Fibonacci applet does it’s processing using a static variable:

in int x;
out int y;

static int a[]; // declares a static (persistent) array variable
if (isinit()) // check if applet has been just compiled (first run)
 a = [1 1]; // if yes, initialize the static variable
int c = count(a); // count elements in the array
if (c < x)
{
 a = append(a, a[c-1]+a[c-2]); // append data to the static array
 respawn(); // tell the system to run the applet again
}
else
 y = a[x-1]; // finished, obtain the resulting value

Please note, applet is compiled when it is being loaded or when it is being edited in
the source code editor. When user enters data in the dynamic variable interfaces,
the applet is executed but not compiled.

Example:

in int i;
static int result;
result += i;

This example will create an entry prompt for the variable i. When the user enters
numbers 1, 2 and 3 (resulting in 123) the static result of the applet will be 136
because on each number entered the applet will be rerun without resetting the static
variable. 136 = 1+12+123.

 18

F(x) for Symbian OS - Developer Manual
http://www.symbianfx.com

16 Numerical Representations

16.1 Input Format

Depending on the format in which the number is entered, F(x) will interpret the
number in a different numerical representation. The format in which number is
entered is determined by a prefix or a suffix to the number.

Integer Decimal Representation (numbers only)

123

Floating Point Decimal Representation

123.123 123e-3 123e+10 123e10

Hexadecimal Representation (‘0x’ prefix)

0xABCD

Octadecimal Representation (‘0c’ prefix or ‘c’ suffix)

0c1234 1234c

Binary Representation (‘0b’ prefix or ‘b’ suffix)

0b0101 0101b

16.2 Output Format

The display format of a variable is determined by its type. For example, ‘hex’ type
will cause variable to display as ‘ABCD’, while ‘bin’ type will cause it to be displayed
as ‘0101’;

‘funds’ type should be used for currency calculation as variables of this type are
formatted as currency in accordance to the current device locale settings (Accessible
via Control Panel). If locale settings have been modified while F(x) is running, you
will need to restart your Symbian device for changes to take effect.

16.3 Result Output Format

Display format of the result can be overridden via the “Result” menu.

 19

F(x) for Symbian OS - Developer Manual
http://www.symbianfx.com

17 Escape Sequences

Escape sequence is a special sequence of characters used for describing non-printing
characters. Escape sequences start with a backslash and are followed by the control
character.

Following escape sequences are supported by F(x):

\n Newline
\t Horizontal tab
\\ Backslash
\' Single quote
\" Double quotes
\x Single byte hexadecimal number
\u Double byte hexadecimal number

Example:

“Line one\nLine two\n\”Line three is enclosed in quotes\””

Escape sequences can be used to enter raw hexadecimal values in a string. Two
methods are available for entering hexadecimal values, single byte and double byte
values.

All internal data processing in F(x) is performed using UTF-16 (double-byte Unicode).
The ‘\xNN’ escape sequence allows entry of single byte hexadecimal numbers where
each number is considered to be maximum of 0xFF value.

Example:

“\x41424344”
is interpreted as 0x41 0x42 0x43 0x44 and results in “ABCD”

The “\uNNNN” escape sequence allows entry of double byte hexadecimal numbers
where each number is considered to be the maximum of 0xFFFF value.

Example:

“\x0041004200430044”
is interpreted as 0x0041 0x0042 0x0043 0x0044 resulting in “ABC”

Hexadecimal escape sequence is terminated when a non-hexadecimal character is
encountered.

For additional information and Unicode character tables please consult
http://www.unicode.org.

 20

http://www.unicode.org/

F(x) for Symbian OS - Developer Manual
http://www.symbianfx.com

18 Operators

18.1 Unary

- - Unary Minus - <expression>

18.2 Arithmetic / Algebraic

= - Assignment <variable> = <expression>
+ - Addition <expression> + <expression>
- - Subtraction <expression> - <expression>
* - Multiplication <expression> * <expression>
.* - Per-Element Multiplication <expression> .* <expression>
/ - Division <expression> / <expression>
./ - Per-Element Division <expression> / <expression>
% - Integer Modulo1 <expression> % <expression>

+= - Add and Assign <variable> += <expression>
-= - Subtract and Assign <variable> -= <expression>
*= - Multiply and Assign <variable> *= <expression>
.*= - Per-Element Multiply and Assign <variable> *= <expression>
/= - Divide and Assign <variable> /= <expression>
./= - Per-Element Divide and Assign <variable> /= <expression>
%= - Assign Modulo (int) <variable> %= <expression>

** - Power <expression> ** <expression>
**= - Assign Power <variable> **= <expression>
++ - Increment <variable> ++
-- - Decrement <variable> --

18.3 Conditional

== - Equal <expression> == <expression>
!= - Not Equal <expression> != <expression>
< - Less <expression> < <expression>
<= - Less or Equal <expression> <= <expression>
> - More <expression> > <expression>
>= - More or Equal <expression> >= <expression>

? : - Conditional expression:

<conditional expression> ? <expression A> : <expression B>
If <conditional expression> is true, <expression A> will be executed,
otherwise <expression B> will be executed.

18.4 Logical

&& - Logical And <expression> && <expression>
|| - Logical Or <expression> || <expression>
! - Logical Not !<expression>
 Expression is pre-converted to Boolean (integer 0 or 1).

1 % operator is used to perform an integer only modulo operation. The expression is converted to integer
before being processed. Please refer to the fmod() function to obtain floating point remainder.

 21

F(x) for Symbian OS - Developer Manual
http://www.symbianfx.com

18.5 Binary

<< - Left Shift by N bits <expression> << <# bits>
<<= - Assign Left Shift by N bits <variable> <<= <# bits>
>> - Right Shift by N bits <expression> >> <# bits>
>>= - Assign Right Shift by N bits <variable> >>= <# bits>
& - Binary And <expression> & <expression>
&= - Assign Binary And <expression> & <expression>
| - Binary Or <expression> | <expression>
|= - Assign Binary Or <expression> | <expression>
^ - Xor <expression> ^ <expression>
^= - Assign Xor <expression> ^ <expression>
~ - Binary Not (Invert) <expression> ~ <expression>

18.6 Other

[] - Subscript Operator (Array declaration or dereference).
‘ - Matrix Transpose

18.7 Operator Precedence

The operators at the top of the list are evaluated first (in the order listed):

Precedence Operators

1 () []

2 ! ~ ++ -- ‘

3 –(unary minus)

4 ** (power of)

5 * / %

6 + -

7 << >>

8 < <= > >=

9 == !=

10 & (binary AND)

11 ^ (XOR)

12 |

13 &&

14 ||

15 ? :

16 =

 22

F(x) for Symbian OS - Developer Manual
http://www.symbianfx.com

19 Keywords

if, else Please see Section 25 - Conditions

in, out Please see Section 13 - Dynamic Variables

for, while, do while
 Please see Section 26 - Loops

halt Terminates applet execution at run-time. The interpreter will exit keeping

the last calculated result as the applet result.

 Example:
 if(a < 100) halt;
 a – 100; // continue evaluation if not halted

eof “end of applet” - terminates applet compilation. The compiler will compile

the applet only up to the point it encounters this keyword. Any text that
follows this keyword will be ignored.

20 Execution control functions

F(x) includes functions that allow conditional termination of the applet execution or
signaling of an error:

error(<id>)

 This function will terminate applet execution and report the error to the

user. Possible error values are defined as system constants as follows:

 E_INPUT - Invalid User Input
 E_RANGE - Out of Range
 E_INSUFF - Insufficient Input
 E_PARAMS - Too Many Parameters

error(“<string>”)

 Thus function will terminate applet execution and report the error to the

user. The error string to be reported is specified as the parameter to this
function.

range(<value>,<min>,<max)

 This function will terminate applet execution with the “Out of Range” error

if the supplied value is outside of the supplied minimum and maximum
boundaries.

 23

F(x) for Symbian OS - Developer Manual
http://www.symbianfx.com

21 Arrays, Vectors and Matrices

21.1 In-place Arrays Declarations

In-place arrays are temporary arrays constructed within a statement and can be
used as a part of an expression or to initialize a variable.

One dimensional in-place arrays can be declared using the following syntax:

 [1 2 3] or [1, 2, 3]

Two dimensional in-place arrays can be declared using the following syntax:

 [[1 2 3] [4 5 6]] or [1 2 3; 4 5 6]

Above example creates the following two dimensional array:

 1 2 3
 4 5 6

Each element of the in-place array declaration can be an expression:

 [sin(x), 0.0; 0.0, cos(y)]

Above example creates a 2x2 array where [0][0] element is “sin(x)” and [1][1]
element is “cos(y)”.

Please note that mixing numerical and string elements in the in-place array
declaration will cause all elements to be converted to string. For example, declaring
[1 2 3 “a”] will result in [“1” “2” “3” “a”].

21.2 Array Padding

All rows in a multidimensional array must be of the same length. If array is created
with different row sizes, all rows will be padded with zeroes to match as follows:

 [1 2; 4; 7 8 9]

will result in the following two dimensional array:

 1 2 0
 4 0 0
 7 8 9

 24

F(x) for Symbian OS - Developer Manual
http://www.symbianfx.com

21.3 Comma vs. Space Array Element Separation

PLEASE NOTE: While it is possible to use either space or comma when initializing an
in-place array, a minus preceding a negative number may be considered as a part of
an expression as follows:

 [1 -5 3] will be treated as [(1 -5) 3] and create array [-4 3]

Thus a comma must be used to separate these values as follows:

 [1, -5, 3] will create [1 -5 3]

21.4 Zero Size Array Variables

Array variables in F(x) are dynamically resized to accommodate data that is being
placed in them. This means that at declaration a variable can be an array of zero
size.

The following syntax declares one, two or three dimensional array variables of zero
size:

float a[];
float a[][];
float a[][][];

No operations on these variables can be performed other then assigning another
array that contains data. An array variable can be assigned only an array that
contains same number of dimensions.

21.5 Pre-allocated Array Variables

Array variable can be pre-allocated at declaration as follows:

 float a[3];
 float a[3][3];

Above declarations will create a variable array that contains elements of type float
inialized to 0.0.

21.6 Matrices and Per-Element Array Operations

Any operation on the array are performed on per-element basis with the exception of
multiplication where an array will be treated as a matrix and follow the rules of linear
algebra matrix multiplication.

 25

F(x) for Symbian OS - Developer Manual
http://www.symbianfx.com

In order to perform a per-element array operation, the operator must be preceded
by a dot ‘.’ as follows (in case of multiplication): ‘.*’

Example:

Matrix Multiplication: [2 3; 4 5] * [6 7; 8 9] = [36 41; 64 73]
Per-Element Array Multiplication: [2 3; 4 5] .* [6 7; 8 9] = [12 21; 32 45]

21.7 Matrix Multiplication

The multiplication operator ‘*’ is executed according to the rules of linear algebra. If
A and B are two matrices, the A*B operation can be carried out only if the number of
columns in matrix A is equal to the number of rows in matrix B. The result is a
matrix that has the same number of rows as matrix A and the same number of
columns as matrix B.

Please note that matrix multiplication is not commutative (A*B != B*A).

21.8 Per-Element Array Multiplication

The per-element multiplication operator ‘.*’ performs multiplication of each element
in the array A on the corresponding element of the array B.

Multiplication of all array elements between A and B arrays is only possible if A and B
are arrays of the same size.

21.9 Matrix Transpose Operator

Matrix Transpose operation interchanges row and column dimensions of a matrix.
F(x) uses the ‘ ‘ ‘ operator placed after a matrix to transpose a matrix.

Example:

 [1 2; 3 4]’ produces [1 3; 2 4]
 [1 2 3]’ produces [1; 2; 3]

Following examples demonstrate use of transpose operator:

A = B’;
A = [1 2 3]’;
A = (B*C)’;

Transpose operation can be also performed on a matrix using mtranspose()
function.

 26

F(x) for Symbian OS - Developer Manual
http://www.symbianfx.com

22 Complex Numbers

F(x) provides integrated support for complex numbers via the user of complex data
type. Complex numbers can be converted from and to an array with two elements
where first element of the array represents the real part of the complex number and
the second element represents the imaginary part.

Example:

complex a = [1, 1];
a; // the displayed result will be (1,1)

Complex numbers support a full set of arithmetic and logical operators.

When using complex numbers, it is possible to mix in two element arrays. If one of
the elements in the expression is a complex number and another one is a compatible
array, the expression will be considered as an operation on complex numbers.

Example:

complex a = [1, 1];
complex b = a ** [0.5, 0.0];
complex c = a + [2, 2];

F(x) allows use of arrays with complex numbers as well as conversion from and to
arrays that may represent complex numbers as pairs of real numbers.

Example:

complex a[] = [1,1; 2,2; 3,3];
real b[] = a; // b results as [1,1,2,2,3,3];
real c[][] = a; // c results as [1,1; 2,2; 3,3];

F(x) offers a variety of mathematical functions that operate on complex numbers.
For the list of these functions please consult Functions and Interfaces document
included with F(x) installation or refer to the online documentation available at
http://developer.symbianfx.com

Examples:

Finding the distance between two real vectors:
real d = dist([1 2 3],[4 5 6]);

Finding distance between two complex vectors:
real d = dist([1,0;2,2;3,0],[4,0;5,0;6,0]);

Finding the sine of a real number:
real s = sin(1);

Finding the sine of a complex number:
real s = sin([1,0]);

 27

http://developer.symbianfx.com/

F(x) for Symbian OS - Developer Manual
http://www.symbianfx.com

23 Strings

23.1 Using Strings

A string is declared in-place by enclosing text within double quotes:

“this is a string”

In-place string declarations may be up to 128 characters in length (including
quotes).

Strings can be assigned to a variable of type string:

string s = “this is a string”;

Strings can be used within a string array:

string s[] = [“first” “second” “third”];

23.2 String Comparison

Two strings can be compared using ‘==’ and ‘!=’ operators. String comparison is not
case sensitive.

The unary NOT operator ‘!’ allows to check for an empty string

 str s = “”; // create an empty string
 if(!s) { … } // tests true for an empty string
 if(!strlen(s)) { … } // alternate method to test for an empty string

23.3 String Concatenation

Strings can be concatenated using ‘+’ operator.

23.4 Numeric data type conversion

Strings offer silent conversion from and to numeric data types. When converting
from and to strings, all numbers are considered to be floating point numbers.

 str s = 1; // results in s being “1.0”
 real r = “1”; // results in r being 1.0
 int I = “1.0”; // results in i being 1

It is possible to convert a number to a string representation of an integer by using
itoa() function.

 28

F(x) for Symbian OS - Developer Manual
http://www.symbianfx.com

 str s = itoa(1); // results in s being “1”

itoa(), atoi(), ftoa(), atof() functions offer strict data type conversion.

When used in expressions with numeric data types, the order in which types are
used dictates the result.

 123 + “456” results in 579
 “123” + 456 results in “123456”

Other operations

F(x) provides a set of string manipulation functions such as strlen() to obtain a string
length, strops() to obtain position of a substring within a string and substr() to
retrieve a substring from within a string.

 29

F(x) for Symbian OS - Developer Manual
http://www.symbianfx.com

24 Constants

Constants can be used in the applet itself as well as a part of the dynamic variable
input expression. Constants are created as “data sets”, which are files containing
constant names and values. These files are processed and cached at F(x) startup.

24.1 Duplicate constants

If F(x) detects presence of duplicate constants (constants that have the same name),
F(x) will report the problem and log all relevant information into the F(x) log file
“Error Log” located in the root F(x) folder.

24.2 Constant dataset file format

Constants are stored in a UNICODE file in the following format:

CONSTANT_NAME = CONSTANT_VALUE; <CONSTANT_INFO_LINE>

CONSTANT_NAME - an alphanumeric name starting with a letter.
CONSTANT_VALUE - a numeric value that is represented in a hexadecimal,

decimal, octadecimal or binary formats (please refer to
Section 16 - Numerical Representations).

CONSTANT_INFO_LINE – an optional constant descriptor that may contain any text.

If you have your own constants that you would like to include into F(x), you can
assemble them on your personal computer in the above described format, place the
file in one of the F(x) folders and update caches (or restart F(x)).

24.3 Unit conversion constants

F(x) offers unit conversion constants that are not a part of the constant database,
their values are determined at the compile time. Unit conversion constants are
formatted in the following way:

<source unit abbreviation>2<destination unit abbreviation>

For example, to convert Kilometers to Feet we can use “Km2Ft” constant.

Unit abbreviations used in the constant library may not follow common scientific
notations but rather rules established in F(x):

Square and Cubit units are denoted by “Sq” and “Cu” suffixes. For certain
abbreviations force is denoted with “F” suffix. Spread Rate related constants all have
“Sr” suffix. Seconds unit is always abbreviated as “Sec” and Hour unit is always
abbreviated as “Hr”, thus traditional abbreviations such as “kWh” and “Kph” will
become “KwHr” and “KmHr”.

 30

F(x) for Symbian OS - Developer Manual
http://www.symbianfx.com

In addition, abbreviations of some units may include cultural/country information, for
example, “UK Ton 1016.046909Kg (long)” will be denoted as “TUK” while “US Ton
907.18474Kg (short)” will be denoted as “TUS”. A regular metric “Ton 1000Kg” is
denoted as “T”.

Examples: Ft2In (Feet to Inches), Ft2M (Feet to Meters), MiSq2KmSq (Square Miles
to Square Kilometers), Oz2G (Ounces to Grams).

Please refer to the Appendix B – Unit conversion for additional information.

25 Conditions

Conditional statement execution can be created by using if…else statement.

Syntax:

if(<expression>) <statement> [else <statement>]

Example:
 if(Count < 5) Count = 5;
 if(Count < 5) { Count = 5; Parts = 3; }

 if(Value < 10)

{
 Value = 10;

}
else
{

 Value = 20;
}

Please note that conditional expressions are evaluated as regular language
expressions, meaning that conditional statement if(f1(a) || f2(b) || f3(c)) will
evaluate calls to f1(), f2() and f3() even if f1() return TRUE. This is different from
some traditional programming languages where the condition may be considered
TRUE if call to f1() satisfies it. In C/C++ programming languages if f1() returns
TRUE, f2() and f3() will not be called.

 31

F(x) for Symbian OS - Developer Manual
http://www.symbianfx.com

26 Loops

F(x) provides traditional support for loops as in any other programming language.

Please note - Loops present possibility for potential performance loss during applet
evaluation as well as performance resource drain on the host device. Given these
factors, applets are currently limited to the execution of 131072 instructions
maximum. If evaluator encounters more instructions, the applet will be considered
as “Infinite” and an error will be reported.

Syntax:

for([initialization statement] ; <condition>; [iteration operation]) <statement>;

Example:

for(int a = 0; a < 25; a++) b += c;
for(; a < 100;)
{

a += k;
k *= m;

}

while(<condition>) <statement>;

Example:

while(int a < 100) a += k;

do <statement> while(<condition>);

Example:
 do { a += i; i++; } while(i < 10);

27 Expression Results

F(x) internal instruction set is similar to that of a modern computer programming
language. Similarly to other execution environments, F(x) executes its operations on
a dynamic program stack. The F(x) result window always displays the result of the
last operation performed on F(x) stack.

Example:

1 + 2 will produce 3 as the last value on the stack and result window
will display ‘3’.

If you are performing complex operations with multiple variables and would like to
place one of the variables on the stack for output in the result window, you may
simply place the variable containing the value or a constant at the end of the applet.

Example:

 32

F(x) for Symbian OS - Developer Manual
http://www.symbianfx.com

 if(a < 10)
{

0; // place 0 as the last applet result value
halt; // halt applet execution

}
else
{

a += 50;
}
a; // place variable a as the last applet result value

 33

F(x) for Symbian OS - Developer Manual
http://www.symbianfx.com

28 Value Sampling

sample() function allows sampling of a given expression for a set of values. On input
this function takes an expression to be evaluated, the starting value of the
evaluation, the ending value and the amount of samples. On output this function
returns an array with evaluated samples.

Syntax:

sample(“<expression>”,<start>,<end>,<number of samples>);

Example:

sample(“sin(x)*0.5”,-PI,PI,25)

The above function call will return an array of 25 elements that will represent the
sampling of the supplied expression between –PI and PI values.

The variable X is automatically created in the applet that uses sample() function. If
user creates variable X in the applet, it will be used as a sampling range counter
during sampling.

The outside environment of the compiler is visible to the sampled expression, thus all
variables that are currently declared in the applet can be used within the specified
expression:

 in float MyValue;
 out float graph[] = sample(“cos(x)*MyValue”,-5,5,10);

 34

F(x) for Symbian OS - Developer Manual
http://www.symbianfx.com

29 Graphing and Plotting

29.1 One and Two Dimensional Graphs

One dimensional graphs are displayed on Y over X axis where position on the Y axis
is the value of the array element and position on the X axis is the sequential number
of the array element.

Two dimensional graphs take a two dimensional array and consider column 0 to
represent X axis and column 1 to represent Y axis.

If one dimensional graph receives a multi-dimensional array on input, it will consider
each row of the array as a separate dataset and plot each dataset on top of each-
other. This ability can be used to plot multiple graphs on top of each-other for
comparative analysis.

Syntax:

@array graph [<min X> <max X> <min Y> <max Y>] [“<caption>”];
@array plot [<min X> <max X> <min Y> <max Y>] [“<caption>”];
@array stem [<min X> <max X> <min Y> <max Y>] [“<caption>”];

@2d_array graph2d [<min X> <max X> <min Y> <max Y>] [“<caption>”];
@2d_array plot2d [<min X> <max X> <min Y> <max Y>] [“<caption>”];

Interface Parameters:

 <min X> <max X> <min Y> <max Y> - graph view bounding values.
 Default values 0,1,0,1 are used if none supplied. These values are used by

the graph interface for initial plot dimensions.

Example:

 out float a[] = [0.4 0.5 0.8 0.3 0.6];
 @a graph; // default view bounds used

 out float a[] = [0.4 0.5 0.8 0.3 0.6];
 @a graph 0 1 0 1; // initial view bounds supplied

// ---
// following example “fits” the graph in the view

 float a[] = [0.4 0.5 0.8 0.3 0.6];
 @a graph 0 count(a) min(a) max(a);

// min Y is the smallest element in the array
// max X is number of array elements
// max Y is the largest element of the array

 35

F(x) for Symbian OS - Developer Manual
http://www.symbianfx.com

30 Function Plotting

30.1 Sampling and plotting functions

As it is seen in the above examples, F(x) does not support a concept of function
plotting in a way similar to calculators. Instead, it allows sampling of function values
into an array and then provides a graph interface by means of which this array can
be plotted.

The following example reviews function plotting in F(x):

// offer user to input function, for example “sin(x)/x”
in str func;

// set interface for variable “func” to string to avoid having
// user to include his input in quotes.
@func string “Function”;

// offer user to input sampling bounds (x1…x2)
in float x1,x2;

// specify sampling resolution (how many samples to perform)
float samples = 256; // N samples

// create output array that will be plotted as a graph
out float a[];

// sample user specified function func for N samples
// with x value ranging between x1 to x2.
a = sample(func,x1,x2,samples);

// setup graph interface
@a graph x1, x2, min(a), max(a) “Function Plot”;

In this examples, our x coordinate bounds are x1 and x2 and our y coordinate
bounds are the smallest and the largest value found in the array a.

It is important that @a graph…; interface is setup after the sampling is performed
because it’s parameters min(a),max(a) rely on the data present in the array a.

30.2 Plotting bounds

Graph interface requires 4 parameters in order to determine plotting bounds. Values
in the array will be plotted using absolute Y value within virtual X bounds. Meaning
that for Y axis, the plotting coordinates will always be that of the absolute Y value,
however for X axis, the plotting will be interpolated between x1 and x2.

Example:

float a[] = sample(“sin(x)”,-10,10,100);

 36

F(x) for Symbian OS - Developer Manual
http://www.symbianfx.com

@graph -10, 10, -10, 10;

This example will create a graph with X bounds ranging -10, 10 and Y bounds
ranging -10, 10. Array a[] contains 100 samples of sin(x) where x ranges from -10
to 10. This array will be plotted on X axis where a[0] is located at -10 and a[99] is
located at +10. However, the value of a[x] will remain absolute (not scaled), so even
if the graph displays Y axis ranging from -10 to +10, the Y value will range between
-1..+1 (range of the sin(x) function output).

30.3 Function variable access

Please note that function specified in call to sample() has access to variables present
in the current applet environment. Thus the following scenario is possible:

in float t;
out float a[] = sample(“cos(x)*sqr(x*t)”,x1,x2,S);

30.4 Creating overlapping graphs

The following example creates two functions that are sampled into a two dimensional
array. When this two dimensional array is plotted, each row is considered to be a
separate graph, thus these graphs will be overlaid on top of each-other and
distinguished by different colors.

// functions to sample:
in str funcA,funcB;
@funcA string "Func A"; // ex: sin(x)/x
@funcB string "Func B"; // ex: cos(x)

// min and max x values
in float x1,x2; // ex: -10…10

// # of samples
float S = 256;

// create and sample
// output array
out float a[][2];
a[0] = sample(funcA,x1,x2,S);
a[1] = sample(funcB,x1,x2,S);

// setup graph interface
@a graph x1, x2, min(a), max(a) "Function Plot";

 37

F(x) for Symbian OS - Developer Manual
http://www.symbianfx.com

31 Charting

31.1 Pie Chart Output Interface

Pie chart considers sum of all array elements to be 100%. Subsequently each array
element represents a slice of the pie chart. Please note that Pie charts do not
function well in certain user interface configurations, in particular they will be
unreadable in Series 60 and UIQ platforms unless they are maximized to fit the
screen.

Interface Syntax:

 @array pie [<legend>] [“<caption>”];

 <legend> - opt. string array, pie chart legend (name of each slice).
 <caption> - opt. string, pie chart caption.

Example:

 out float a[] = [20 30 50];

@a pie;

 out float a[] = [20 30 50];
 @a pie [“First” “Second” “Third”] “Sample Pie Chart”;

31.2 Bar Chart Output Interface

Each bar on the chart represents an array element. The height of the bar is
determined by the specified maximum value in the bar interface parameters.

Interface Syntax:

 @array bar [<max_value>] [“<caption>”];

 <max_value> - opt. maximum bar value.
 <caption> - opt. bar chart caption.

Example:

 out float a[] = [2 3 8 3 6 4 2 4 7];
 @a bar 10 “Sample Bar Chart”;

 out float a[] = [2 3 8 3 6 4 2 4 7];
 @a bar max(a) “Sample Bar Chart”;
 // uses max(a) to retrieve the largest array value

31.3 Histogram Output Interface

 38

F(x) for Symbian OS - Developer Manual
http://www.symbianfx.com

Histogram is a graphical representation of a frequency distribution. Each bar on the
chart represents an integer value. The height of the bar is determined by the
amount of times this value is encountered in the array.

Interface Syntax:

 @array histogram [<max_value>] [“<caption>”];

 <max_value> - opt. maximum bar value.
 <caption> - opt. bar chart caption.

Example:

 out float a[] = [2 2 8 3 6 2 8 4 7 1 2];
 @a histogram 10 “Sample Histogram”;

 This example will create a bar chart indicating element iterations:
 1:1 2:4 3:1 4:1 5:0 6:1 7:1 8:2 9:0 10:0

 39

F(x) for Symbian OS - Developer Manual
http://www.symbianfx.com

32 Date, Time and Duration

32.1 Date, Time and Duration Representation

F(x) provides functionality for date / time calculations. Date and Time values are
stored in a 64 bit integer using internal Symbian SDK Time/Date format.

Internal Symbian time format represents a date and time as a number of
microseconds since midnight, January 1st, 0 AD nominal Gregorian.

To store date/time values in the variable, you can use timestamp() function. To
retrieve date/time elements from the variable you can use functions such as
getyear(), gethour() etc.

32.2 Date and Time Interfaces

Date, Time and Duration values can be set via dynamic input variable interfaces.

Syntax:

 @timestamp date [“<caption>”]; // offer date input
 @timestamp time [“<caption>”]; // offer time input
 @timestamp datetime [“<caption>”]; // offer both date and time input
 @timestamp duration [“<caption>”]; // offer duration input

Example:

 in int t1,t2,t3,t4;
 @t1 date “Enter Date”;
 @t2 time “Enter Time”;
 @t3 datetime “Enter Date and Time”;
 @t4 duration “Enter Duration”;

32.3 Duration Interface

Duration interface allows user to input the time duration by specifying hours,
minutes and seconds (hours and minutes only on UIQ platform). The resulting value
is represented in seconds.

Syntax:

 @timestamp duration [“<caption>”]; // offer duration input

Example:

 in int d;
 @d duration “Enter Duration”;

 40

F(x) for Symbian OS - Developer Manual
http://www.symbianfx.com

33 Tables

Tables are regular CSV files that can be exported from or imported to spreadsheet
capable applications like Microsoft Excel, Lotus 123 and Open Office.

33.1 File Format

CSV files are text files that contain rows and columns. One row of data is stored as a
single line in a file and each column is separated with a comma. If a comma exists
in the body of the column (the text itself), the column text will be enclosed in
quotes. If a quote is present in the body of the text, it will be prefixed by another
quote.

Example:

column one, ”column, two”, ”column ””three””

33.2 Column Names

In addition to the standard CSV file format convention F(x) allows creation of column
names. Once column has been named, it is possible to access the column data by
this name. Column names can be created by having the first row of the CSV file
start with ‘#’ and contain comma separated names for each corresponding column.

Example:

#alpha, beta, gamma
40543,540452,3242
26571,4197,3852

Regardless of the column name row, row processing in F(x) is always zero based, so
whether there is a column name row as first row or there isn’t, first row containing
data is addressable as 0.

33.3 Data types

When F(x) reads a table, the data types of columns are determined dynamically. If
F(x) encounters a number it will interpret it as a numerical value, if it encounters a
string, it will be interpreted as string.

Table rows can frequently become multi-type arrays. Multi-type arrays are arrays
that contain a mix of datatypes such as integer, floating point and string values.
Multi-type arrays can only be used to store/retrieve information, majority of other
functionality possible on arrays will produce errors.

Accessing of an element in a multi-type array is possible by dereferencing the array
element using standard syntax “a[n]”; setting the array element in a multi-type

 41

F(x) for Symbian OS - Developer Manual
http://www.symbianfx.com

array may not be possible using standard dereferencing due to type mismatch. In
this case you can use set(<position>,<variant>) function to set the value and
enforce the type of the array element.

33.4 Table ID and Selection

Each opened table is represented by a unique id. Each opened table has a notion of
the currently selected row. Once row is selected it is possible to access its data
without having to specify the row number.

topen(<file name>) opens a table in the current directory.

Example:

int table_id = topen(“records”); // .csv extension should not be specified
int table_id = topen(“tables\records”); // specifies a table located in the subdirectory

Other essential functions:

tselect(<row number>) - selects the row as current.
tappend() - creates a new row and selects it as current.
trowget() - retrieves row data as an array
trowset() – sets row data from array into a table

The following example summates all values in a specified column from the CSV file A
and stores the output into the CSV file B:

in bool button_calc;
@button_calc button “Calc Total”;

int tid_sales = topen(“sales_records”);
int tid_totals = topen(“sales_totals”);

funds total = 0.0; // our calculated total

// column number that contains values to be used
// in this case we use last column of the table
int col = tcolcount(tid_sales)-1;

for(int i = 0; i < trowcount(tid_sales); i++)
{
 funds row[] = trowget(tid_sales,i);
 total += row[col];

 // following syntax is possible but not used for clarity
 // total += trowget(tid_sales,i)[tcolcount(tid_sales)-1];
}

if(button_calc)
{

// tappend() function creates new row and sets it as current
// refer to tselect() function for more information

 42

F(x) for Symbian OS - Developer Manual
http://www.symbianfx.com

tappend(tid_totals);
trowset(tid_totals,total);
notify(“Total Calculated”);

}

33.5 Table resources

Many table related functions use table resources to obtain table id and row
information. The @..table interface allows selection of a table record from a pull-
down list. The variable linked to the @..table interface automatically becomes a
resource representing the current table and its selection.

Table resource is an array that is comprised out of the following information:

[id, row_number, total_row_count, selection_flag]

id – id number of an opened table
row_number – number of the currently selected row in the table row selection
control
total_row_count – total number of rows in this table
selection_flag – indicates if selection has been changed

The selection_flags element is set to 1 when the applet execution is triggered by the
record selection from the table row selection control.

34 Stacks

Stack is a temporary storage container that exists only during execution of the
applet. Stack is a LIFO (Last In First Out) container, meaning that if you place items
A B C on the stack when you retrieve them the order of the items will be C B A.

Stack functions utilize handles to differentiate stacks. Stack handle can be any
numerical value as stacks are created dynamically. This means that if you use value
“1” a stack with such handle will be created automatically for you.

Example:

for(int i = 0; i < 100; i++)
{

if(i & 0x1) push(123,i); // place all odd numbers on the stack
}

i = 0;

while(stackcount(123))

i += pop(123); // add all odd numbers from stack

i; // display result

 43

F(x) for Symbian OS - Developer Manual
http://www.symbianfx.com

35 Dynamic User Interface Creation

F(x) offers functions for dynamic creation of user interface. Typically user interface
is built by analyzing applet variables and their interfaces, dynamic UI function allow
conditional creation of variables. This functionality is especially helpful for creation
of interactive forms (applets used to gather and then store/submit data).

35.1 Variable Access

Following example uses user interface functions to analyze the applet environment
and build a human readable string that can then be transmitted to a 3rd party via
SMS or E-Mail:

in str client; // name of the client
@client string "Client Name";

in bool q1,q2,q3,q4,q5,q6; // manually created variables

// a title can be assigned to the variable at the interface creation time
// @<name> <interface> “<title>”

@q1 check "Diabetes"; // variable titles
@q2 check "Heart Disease";
@q3 check "Mental Illness";
@q4 check "High BP";
@q5 check "Cancer";
@q6 check "Epilepsy/Seisure";

// message string to be generated by this applet
out str msg = "Family History for: "+client+cr();
// cr() function adds a carriage return (new line)

// main loop that iterates through sequential variables starting with "q"
// vpresent() function tests for existence of the variable
// itoa() function is used to convert integer i to string
for(int i = 1; vexists("q"+i); i++)
{
 // vtitle() function retrieves the title of the variable by name
 // vvalue() retrieves a value of the variable by name

msg += vtitle("q"+i)+": " +(vvalue("q"+i) ? "YES" : "NO")+"\n";
}

// create "SEND" output interface for the string msg.
// SEND output interface will display a button, upon hitting which the
// contents of the string will be transmitted via E-Mail, SMS or another
// method selected by the end-user.

@msg send "Send History Info";

 44

F(x) for Symbian OS - Developer Manual
http://www.symbianfx.com

35.2 Variable Creation

The following example demonstrates dynamic creation of the user interface based on
table data.

// reset all previous dynamically created variables
uireset();

// tselect interface lists all tables residing in the same folder as the
// current applet and allows user to select one of them. In this example
// the selected table will be used as a source of variable titles.
in str tbl;
@tbl tselect;

// if no table is selected, display an error and abort
if(!strlen(tbl)) error("PLEASE SELECT TABLE");

// for the purpose of the example we create a progress bar that
// displays how many percent of variables have been marked checked.
out float total;
@total progress;

int t = topen(tbl); // open the user selected table

str a[];
a = tcolget(t,0); // retrieve first column of the table as an array

out str m; // message to be generated for output/sending

for(int i = 0; i < count(a); i++)
{
 // vcreatein(), vcreateout() and vcreate() allow creation of
 // input, output and local variables of a given type.

 // create integer variables with name and title of a[i]
 vcreatein("int",a[i],a[i]);

 // assign created variable a checkbox interface
 viface(a[i],"check");
}

// update user interface to reflect created variables
uiupdate();

// scan created variables for values and build a text message
for(i = 0; i < count(a); i++)
{
 total += vvalue(a[i]) ? 1:0; // count each variable set to TRUE
 m += vtitle(a[i]) + ": " + (vvalue(a[i]) ? "YES" : "NO") +" \n";
}

 45

F(x) for Symbian OS - Developer Manual
http://www.symbianfx.com

// set the total value as percentage of variable count
total = total / count(a) * 100;

// assign variable m a SEND interface so that
// it can be dispatched to the messaging system.
@m send "SEND RESULT";

35.3 F(x) User Interface Paradigm

A developer reviewing the above example will immediately ask the following
question: “How can we create a variable for user input and immediately retrieve the
value entered by the user?”.

As you edit applets on device or when you exit and open the same applet you will
notice that input values are preserved by F(x). Editing of applets frequently
produces syntax errors, when these errors are corrected F(x) restores original user
input.

The user input caching mechanism is one of the components that allows dynamic
user interface construction to function correctly. Once you create an input variable N
and the user inputs a value in it, the value is cached. When the applet rebuilds the
user interface and reintroduces the variable N, F(x) will retrieve its value from cache
upon creation.

35.4 Variable Content Modification

It is possible to modify the contents of the variable input interface, provided that this
interface is of EDIT or STRING type.

Function setiv(<variable name>,<variable value>) allows user to set the input edit
field to specific text. Please note that this will occur for every applet invocation, thus
this type of functionality has to be conditional:

in int multiplier; // input variable

in bool reset_btn; // reset button
@reset_btn button “Reset”;

if(reset_btn)
{
 // if button pressed, reset default value to 0.5
 setiv(“multiplier”, “0.5”);
}

 46

F(x) for Symbian OS - Developer Manual
http://www.symbianfx.com

36 Executing Applets as Functions

Currently F(x) does not offer ability to create in-applet functions, however creation
and invocation of user functions can be achieved in two ways.

First way is the already mentioned method of value sampling, where sample()
function is invoked with the body of a user function specified as a string parameter.

Second way is to invoke another applet as a user function using exec(). Unlike
sample(), the applet executed via exec() does not have access to the current applet
workspace, thus it can not use variables present in the invoking applet.

exec(<string applet name>, <parameter array>) function allows execution of an
external applet and returns the result of the applet. (External applet execution is
very fast because the invoked applet if precompiled into F(x) byte code.)

Array of parameters specified in the second argument to exec() is passed on to the
invoked applets as an array variable “argv”. When creating an applet to be used as
a function, you can declare the argv[] variable to simulate valid parameter input.
Once the applet invoked, the contents of the argv[] array will be replaced with those
supplied to the exec() function. If argv[] variable does not exist, it will be created by
the compiler.

Example:

// ~~~
// child applet.f(x)

// this applet will be invoked as a function.
// implementing f(x) = a*x2+b*x+c

float argv[4]; // x a b c

// this is the last operation on the stack,
// thus it is considered the final applet result.

argv[1] * sqr(argv[0]) + argv[2] * argv[0] + argv[3];

-

// ~~~
// parent applet.f(x)

out float a[32];
for(int i = 0; i < count(a); i++)
 a[i] = exec(“child applet”,[i 1 1 1]);

Please note that recursive execution of applets using exec() function is not possible
and a recursion error will be reported if user attempts to do so.

 47

F(x) for Symbian OS - Developer Manual
http://www.symbianfx.com

37 Continuous Execution

It is possible to make an applet run continuously. This can be achieved using
respawn() function. This function will schedule the applet to be executed again once
it is finished running.

This ability can be useful when using F(x) to accumulate real-time user interaction or
represent time relative to current.

Example:

int t = hometime();
respawn();
t;

The above example will continuously update the timestamp value as the result of the
applet until the user switches to another application or exits the applet.

 48

F(x) for Symbian OS - Developer Manual
http://www.symbianfx.com

38 F(x) Applet Library

F(x) comes with a package that contains various applets and formulas for use with
F(x). While this package is included with F(x), it is also available for installation
separately. This applet package is a standalone SIS (Symbian Installation System)
file, and can be upgraded separately from F(x).

IMPORTANT – When upgrading F(x) Applet Library, Symbian Installer will remove
any previously installed files. Consequently if you have modified any applets that
are a part of the F(x) Applet Library, these changes will be lost. You must rename
the files you have modified or move them into a different folder in order for the
Symbian installer to ignore them. The installer will not touch any of the files that
were not a part of the previous installation.

39 Support

http://developer.symbianfx.com web site contains additional information related to
the F(x) software, its updates, development information and support forums on
which you may post any questions, your applets or ideas for further software
development.

If you have purchased F(x) and have a specific technical question, you may e-mail it
to support@symbianfx.com.

You may also inform us of any problems you encounter by submitting applets with
comments via applet submission function (available via F(x)/Submit menu). Please
make sure to include your e-mail address in the applet source code as a comment so
that we may get back to you.

40 Applet Submission

Applets created by you can be submitted to the symbianfx.com site to be made
available to other F(x) users. Once submitted, the applet will be reviewed and
posted in the appropriate site category. The applet may be modified in order to
clarify or enhance its functionality.

Applet submission is anonymous, no information pertaining to the user or the device
will be submitted during the process, unless the user chooses to include his/her
credentials in the applet itself in the form of the comment. If done so, this comment
will be preserved in the applet as it is placed online.

In order to submit the applet, you must have a GPRS or an alternate method of the
internet connection directly from the Symbian device running F(x). Applet
submission can be done via “F(x)/Submit” menu. Alternatively, you may submit
applets by e-mailing them to submit@symbianfx.com or posting them on the
discussion forum available at http://developer.symbianfx.com/forum/ .

When submitting an applet, please use comments to communicate any additional
information, such as the description and application of the applet.

 49

http://developer.symbianfx.com/
mailto:support@fxuiq.com
mailto:submit@fxuiq.com
http://developer.symbianfx.com/forum/

F(x) for Symbian OS - Developer Manual
http://www.symbianfx.com

41 Software License Agreement

OWNERSHIP OF SOFTWARE

You acknowledge and agree that this software solution (named “F(x)”) and associated
documentation (collectively, the "Software"), except applets included with or designed for the
software, are owned exclusively by Loginid Enr. You agree that the price paid by you for the
Software is a license fee granting you only the rights set forth in this License Agreement.

LICENSE

Loginid Enr., grants to you, and you accept, a limited, non-exclusive and revocable license to
use the Software, in machine-readable, object code form only. You agree to use the Software
only as authorized in this License Agreement. This License Agreement does not convey to you
any ownership rights or any other interest in the Software.

SCOPE OF LICENSE

This Software is licensed to be installed and used on only one computer. A valid license must
be purchased for each computer on which the Software is installed.

You may not copy or make any changes or modifications to the Software, and you may not
translate, decompile, disassemble, or otherwise reverse engineer the Software. You may not
lend, rent, lease or sublicense the Software or any copy to others for any purpose. You agree
to use all reasonable efforts to protect the Software from unauthorized use, modification,
reproduction, distribution or publication. You are not permitted to make any uses or copies of
the Software that are not specifically authorized by the terms of this License Agreement, and
Loginid Enr., reserves all rights that are not expressly granted to you. Your adherence to this
License Agreement will allow Loginid Enr., to continue developing innovative and useful
products and providing a high level of customer service and support.

TERM

This license will become effective on the date you acquire the Software and will remain in
force until terminated. You may terminate the license at any time by removing the Software
from your computer and destroying the original Software and all copies. This license will
automatically terminate if you breach any of the terms or conditions set out in this License
Agreement. You agree to remove the Software from your computer, and either to destroy the
original Software and all copies of the Software or to return the Software to Loginid Enr., upon
termination of this license for any reason.

LIMITATIONS OF LIABILITY AND REMEDIES

In no event shall Loginid Enr., or its licensors be liable for any loss of profit or any other
commercial damage, including but not limited to special, incidental, consequential, punitive or
other damages, even if Loginid Enr., or its licensors are advised, in advance, of the possibility
of such damages. In no event shall the liability of Loginid Enr., or its licensors exceed the
purchase price paid for the Software. In no event shall Loginid Enr., or its licensors be liable
for the content of applets or algorithms used in them, whether included with or created for the
software.

OTHER TERMS AND CONDITIONS

You agree to inform anyone who you may record that their Internet and Computer Activity is
subject to being recorded and archived. You agree to install this software ONLY on a
computer that you own or on a computer which you have been given explicit permission to
install. You agree to NOT install this software on any computer you do not own or on any
computer you have not been given explicit permission to install.

 50

F(x) for Symbian OS - Developer Manual
http://www.symbianfx.com

Appendix A – Simple Examples

F(x) as a tape / financial calculator

F(x) statements are separated by the semicolon character. If the semicolon
character is not present, entered expression is considered to be a single statement.

Examples:

 435.57+
 34.90+
 764.34+
 634.94

Above expression will add the numbers together and display the result.

F(x) as a tape calculator with tax

To calculate taxes for the above amount this applet can be modified as follows:

out funds Sub_Total =

435.57+
34.90+
764.34+
634.94;

in real Tax_Rate;
out funds Tax = Sub_Total * Tax_Rate;
out funds Total = Sub_Total + Tax;

Above applet allows to enter values that comprise Sub_Total amount into the applet
itself. Since the values are entered in the applet editor itself, they can be entered
one value per line.

Alternative method that can be used to enter the values for the Sub_Total amount, is
by use of dynamic input variables:

in funds Sub_Total;
in real Tax_Rate;
out funds Taxl = Sub_Total * Tax_Rate;
out funds Total = Sub_Total + Tax;

In the dynamic variable input you can specify the values as follows:

Sub_Total $: 435.57+34.90+764.34+634.94

The following example is provided to show how to calculate taxes in the country with
dual taxation such as Canada:

 51

F(x) for Symbian OS - Developer Manual
http://www.symbianfx.com

in funds Sub_Total;
real Federal_Rate = 7.0; // Canadian Federal Tax Rate
real Provential_Rate = 7.5; // Tax Rate for the province of Quebec
out funds Provential_Tax = Sub_Total * Provential_Rate;
out funds Federal_Tax = (Sub_Total + Provential_Tax) * Federal_Rate;
out funds Total = Sub_Total + Provential_Tax + Federal_Tax;

Base Conversion

The following applet demonstrates how F(x) can be used for conversion between
numerical representations of values:

 in int Value;
 out bin Binary = Value;
 out oct Octadecimal = Value;
 out dec Decimal = Value;
 out hex Hexadecimal = Value;

By declaring 4 variables as dynamic output variables of types bin,oct,dec,hex the
output for each variable will have corresponding numerical representation.

When entering the value of the dynamic input variable “Value” you can use different
numerical representations (please see Section 16 - Numerical Representations for
more information).

Example:

 Value: 0b1001+0xABCD+0c4545

 52

F(x) for Symbian OS - Developer Manual
http://www.symbianfx.com

Appendix B – Unit conversion

Unit Abbreviations used in F(x):

AREA

Ac - acres, Ares - ares, CIn - circular inches, Ha - hectares, Hides - hides (with variations), Rod - roods, CmSq -
square centimetres, FtSq - square feet (UK and US), FtSqSrv - square feet (US survey), InSq - square inches, KmSq -
square kilometres, MSq - square metres, MiSq - square miles, MmSq - square millimetres, RdSq - square rods (or
poles), YdSq - square yards, TimberSq - squares (of timber), Twp - townships

DENSITY

GrnGalUK - grains/gallon(UK), GrnGalUS - grains/gallon(US), GCmCu - grams/cubic centimetre, GL - grams/litre, GMl
- grams/millilitre, KgMCu - kilograms/cubic metre, KgL - kilograms/litre, MegaGrPerCuM - megagrams/cubic metre,
MgL - milligrams/litre, MgMl - milligrams/millilitre, OzInCu - ounces/cubic inch, OzGalUK - ounces/gallon(UK),
OzGalUS - ounces/gallon(US), LbFtCu - pounds/cubic foot, LbInCu - pounds/cubic inch, LbGalUK -
pounds/gallon(UK), LbGalUS - pounds/gallon(US), TMCu - tonnes/cubic metre, TUKYdCu - tons(UK)/cubic yard,
TUSYdCu - tons(US)/cubic yard

ENERGY

Btu - British Thermal Units (International Table), BtuMean - British Thermal Units (mean), BtuTC - British Thermal
Units (thermochemical), CalFood - Calorie (food) (approx.), Cal15C - Calories (15C), Cal20C - Calories (20C), Cal -
Calories (International Table), CalMean - Calories (mean), CalTC - Calories (thermochemical), C - centigrade heat units,
Erg - ergs, FtPl - foot poundals, FtLb - foot pounds-force, GJ - gigajoules [GJ], HpHr - horsepower hours (approx.), J -
joules [J], KCal - kilocalories (IT) (International Table), KCalTH - kilocalories (th), kJ - kilojoules [kJ], kWHr - kilowatt
hours [kWh], MJ - megajoules [MJ], Thm - therms (approx.), WHr - watt hours [Wh], WSec - watt seconds [Ws]

FORCE

Dyn - dynes, KgF - kilograms force, kN - kilonewtons [kN], Kip - kips, MN - meganewtons [MN], N - newtons [N], Pl -
poundals, LbF - pounds force, Sn - sthenes (=kN), TF - tonnes force, TFUK - tons(UK) force, TFUS - tons(US) force

LENGTH

A - angstroms, AU - astronomical units, Brc - barleycorns, Cm - centimetres, Ch - chains (surveyors'), Ems - ems (pica),
Fth - fathoms, Ft - feet (UK and US), FtSrv - feet (US survey), Fur - furlongs, Hands - hands, In - inches, Km -
kilometres, Lg - leagues (4000 to 5000), Ly - light years, Link - links (surveyors'), M - metres [m], Mc - microns
(=micrometres), Nmi - miles (nautical), Mi - miles (UK and US), Pc - parsecs, Perch - perch (=rods or poles), PiC -
picas (computer), PiPr - picas (printers'), PtC - points (computer), PtPr - points (printers'), Yd - yards

LINE DENSITY

Denier - denier, Drex - drex, GCm - grams/centimetre, GKm - grams/kilometre (tex), GM - grams/metre, GMm -
grams/millimetre, KgKm - kilograms/kilometre, KgM - kilograms/metre, MgCm - milligrams/centimetre, MgMm -
milligrams/millimetre, OzFt - ounces/foot, OzIn - ounces/inch, LbFt - pounds/foot, LbIn - pounds/inch, LbMi -
pounds/mile, LbYd - pounds/yard, Tex - tex, TKm - tonnes/kilometre, TUKMi - tons(UK)/mile, TUSMi - tons(US)/mile

POWER

BtuHr - Btu/hour, BtuMin - Btu/minute, BtuSec - Btu/second, CalHr - calories/hour, CalMin - calories/minute, CalSec
- calories/second, FtLbMin - ft lb-force/minute, FtLbSec - ft lb-force/second, GW - gigawatts [GW], HpE - horsepower
(electric), HpM - horsepower (metric), JHr - joules/hour, Jmin - joules/minute, Jsec - joules/second, KgMHr - kg-force
metres/hour, KgMMin - kg-force metres/minute, KCalHr - kilocalories/hour, KCalMin - kilocalories/minute, kW -
kilowatts [kW], MW - megawatts [MW], W - watts [W]

 53

F(x) for Symbian OS - Developer Manual
http://www.symbianfx.com

PRESSURE OR STRESS

Atm - atmospheres, B - bars, CmHg - centimetres of mercury, CmH2O - centimetres of water, FtH2O - feet of water,
hPa - hectopascals [hPa], InHg - inches of mercury, InH2O - inches of water, KgCmSq - kg-force/sq.centimetre,
KgMSq - kg-force/sq.metre, KNMSq - kilonewton/sq.metre, kPa - kilopascal [kPa], KipInSq - kips/sq.inch, MNMSq -
meganewtons/sq.metre, MH2O - metres of water, Mb - millibars, MmHg - millimetres of mercury, MmH2O - millimetres
of water, NCmSq - newtons/sq.centimetre, NMSq - newtons/sq.metre, NMmSq - newtons/sq.millimetre, Pa - pascals
[Pa], PlFtSq - poundals/sq.foot, LbFtSq - pounds-force/sq.foot, LbInSq - pounds-force/sq.inch, TCmSq - tonnes-
force/sq.cm, TMSq - tonnes-force/sq.metre, TUKFtSq - tons(UK)-force/sq.foot, TUKInSq - tons(UK)-force/sq.inch,
TUSFtSq - tons(US)-force/sq.foot, TUSInSq - tons(US)-force/sq.inch

SPEED

CmMin - centimetres/minute, CmSec - centimetres/second, FtHr - feet/hour, FtMin - feet/minute, FtSec - feet/second,
InMin - inches/minute, InSec - inches/second, KmHr - kilometres/hour, KmSec - kilometres/second, Kt - knots, Ma -
Mach number, MHr - metres/hour, MMin - metres/minute, MSec - metres/second [m/s], MiHr - miles/hour, MiMin -
miles/minute, MiSec - miles/second, YdHr - yards/hour, YdMin - yards/minute, YdSec - yards/second

SPREAD RATE (MASS)

GCmSqSr - grams/sq.centimetre, GMSqSr - grams/sq.metre, InRainMSr - inches of rainfall, KgHaSr -
kilograms/hectare, KgCmSqSr - kilograms/sq.centimetre, KgMSqSr - kilograms/sq.metre, MgMSqSr -
milligrams/sq.metre, MmRainMSr - millimetres of rainfall, OzFtSqSr - ounces/sq.foot, OzInSqSr - ounces/sq.inch,
OzYdSqSr - ounces/sq.yard, LbAcSr - pounds/acre, LbFtSqSr - pounds/sq.foot, LbInSqSr - pounds/sq.inch,
LbYdSqSr - pounds/sq.yard, THaSr - tonnes/hectare, TUKAcSr - tons(UK)/acre, TUSAcSr - tons(US)/acre

SPREAD RATE (VOLUME)

FtCuAc - cubic feet/acre, InCuYdSq - cubic inches/sq.yard, MCuHa - cubic metres/hectare, MCuKmSq - cubic
metres/sq.km, MCuMSq - cubic metres/sq.metre, YdCuMiSq - cubic yards/sq.mile, OzFlYdSq - fl. ounces(UK)/sq.yard
(UK), GalUKAc - gallons(UK)/acre, GalUKHa - gallons(UK)/hectare, GalUSAc - gallons(US)/acre, GalUSHa -
gallons(US)/hectare, InRainV - inches of rainfall, Lha - litres/hectare, LMSq - litres/square metre, MlMSq -
millilitres/sq.metre, MmRainV - millimetres of rainfall

TORQUE

DynCm - dyne centimetres, GFCm - gram-force centimetres, KgFCm - kg-force centimetres, KgFM - kg-force metres,
NCm - newton centimetres, Nm - newton metres [Nm], OzFIn - ounce-force inches, LbFFt - pound-force feet, LbFIn -
pound-force inches, PlFt - poundal feet, TFUKFt - ton(UK)-force feet, TFUSFt - ton(US)-force feet, TM - tonne-force
metres

VOLUME AND CAPACITY

Brl - barrels (oil), BuUK - bushels (UK), BuUS - bushels (US), Cl - centilitres, CC - cubic centimetres, DamCu - cubic
decametres, DmCu - cubic decimetres, FtCu - cubic feet, InCu - cubic inches, Mcu - cubic metres, MmCu - cubic
millimetres, YdCu - cubic yards, DL - decilitres, OzUS - fluid ounces (UK), OzUK - fluid ounces (US), GalUK - gallons
(UK), GalDUS - gallons, dry (US), GalLUS - gallons, liquid (US), LOld - litres (1901 - 1964), L - litres [l or L], Ml -
millilitres, PtUK - pints (UK), PtDUS - pints, dry (US), PtUS - pints, liquid (US), QtUK - quarts (UK), QtDUS - quarts,
dry (US), QtLUS - quarts, liquid (US)

MASS OR WEIGHT

Ct - carats, metric, Grn - grains, G - grams, CwtL - hundredweights, long, CwtS - hundredweights, short, Kg -
kilograms, OzAv - ounces, avoirdupois, OzT - ounces, troy, Lb - pounds, Slugs - slugs (or g-pounds), Stones - stones,
T - tonnes, TUK - tons (UK or long), TUS - tons (US or short)

TIME

Day - day, Hr - hour, Mcs - microsecond, Ms - milliseconds, Min - minute, Sec - second, Wk - week, Y - year

 54

F(x) for Symbian OS - Developer Manual
http://www.symbianfx.com

International System of Units (SI)

All systems of weights and measures, metric and non-metric, are linked through a
network of international agreements supporting the International System of
Units. The International System is called the SI, using the first two initials of its
French name Système International d'Unités. The key agreement is the Treaty of the
Meter (Convention du Mètre), signed in Paris on May 20, 1875. 48 nations have now
signed this treaty, including all the major industrialized countries. The United States
is a charter member of this metric club, having signed the original document back in
1875.

F(x) Applet Library package that is included in the installation comes with a number
of SI unit conversion constants. These constants cover measurements such as
Length, Area, Volume/Capacity, Mass/Weight, Density, Energy, Force, Power,
Pressure/Stress, Speed, Spread Rates (Mass and Volume), Torque and Fuel
Consumption.

To convert a value to an SI unit of measurement you must multiply this value by the
SI conversion constant. For example, to convert Feet to SI unit of length, you must
multiply Feet by Ft2SI constant.

Conversion Between Units

To convert one unit to another, using SI constants, one can use automated
conversion constants that are calculated by F(x) during the applet execution.

For example: to convert Feet to Meters you should use Ft2M constant. This constant
is automatically calculated at the compile time by establishing a relationship between
two constants as follows: Ft2M = Ft2SI/M2SI. Any units can be mixed using
XXX2XXX format as long as they belong to the same category.

 55

F(x) for Symbian OS - Developer Manual
http://www.symbianfx.com

Appendix D – Technical Information

Floating Point Resolution: 64 bit double precision floating point, approx. 2.225074

× 10–308 to 1.797693 × 10+308, with accuracy of 15
decimal places (IEEE754).

Integer Resolution: 64 bit, ranging from -9,223,372,036,854,775,808 to

9,223,372,036,854,775,807.

Operating System: Symbian OS running following user interface platforms:

• UIQ 2.1
• Series60
• Series80
• Series90

Startup memory
requirements: Approx. 500 KB.

Storage requirements: Approx. 1MB.

 56

	Overview of F(x)
	Document File Format
	File Management
	Note Files
	Constant Definition Files
	Table (CSV) Files
	Applet Files
	Applet Editing Interface
	Using Data Input & Output User Interface
	F(x) language fundamentals
	Statements
	Expressions
	Comments

	Variable Declaration
	Variable Types
	Supported Variable Types
	Variable Type Interpretation
	Silent Type Conversion

	Dynamic Variables
	Declaration
	User Input
	Content Reset Button
	Interface Lock Button
	Landscape / Portrait Mode Button

	Dynamic Variable Interfaces
	Declaration Syntax
	Naming
	Default Expression Editor
	String Input/Output
	Unit Input/Output
	Enum Input (Value List)
	Other Interfaces

	Static Variables
	Numerical Representations
	Input Format
	Output Format
	Result Output Format

	Escape Sequences
	Operators
	Unary
	Arithmetic / Algebraic
	Conditional
	Logical
	Binary
	Other
	Operator Precedence

	Keywords
	Execution control functions
	Arrays, Vectors and Matrices
	In-place Arrays Declarations
	Array Padding
	Comma vs. Space Array Element Separation
	Zero Size Array Variables
	Pre-allocated Array Variables
	Matrices and Per-Element Array Operations
	Matrix Multiplication
	Per-Element Array Multiplication
	Matrix Transpose Operator

	Complex Numbers
	Strings
	Using Strings
	String Comparison
	String Concatenation
	Numeric data type conversion

	Constants
	Duplicate constants
	Constant dataset file format
	Unit conversion constants

	Conditions
	Loops
	Expression Results
	Value Sampling
	Graphing and Plotting
	One and Two Dimensional Graphs

	Function Plotting
	Sampling and plotting functions
	Plotting bounds
	Function variable access
	Creating overlapping graphs

	Charting
	Pie Chart Output Interface
	Bar Chart Output Interface
	Histogram Output Interface

	Date, Time and Duration
	Date, Time and Duration Representation
	Date and Time Interfaces
	Duration Interface

	Tables
	File Format
	Column Names
	Data types
	Table ID and Selection
	Table resources

	Stacks
	Dynamic User Interface Creation
	Variable Access
	Variable Creation
	F(x) User Interface Paradigm
	Variable Content Modification

	Executing Applets as Functions
	Continuous Execution
	F(x) Applet Library
	Support
	Applet Submission
	Software License Agreement
	Appendix A – Simple Examples
	F(x) as a tape / financial calculator
	F(x) as a tape calculator with tax
	Base Conversion

	Appendix B – Unit conversion
	International System of Units (SI)
	Conversion Between Units
	Appendix D – Technical Information

